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NON-LINEAR NORMAL MODES OF A
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A power series method is presented for the computation of normal modes and
frequencies of an elastic beam resting on a non-linear foundation. The equation of motion
is first discretized by using the Galerkin procedure. The time-dependent generalized
co-ordinates are obtained by transforming the time variable into an oscillating time which
transforms the discretized equations into a form solvable by the power series method.
Results are obtained for simply supported and clamped beams, and good agreement is
shown for the simply supported case with the result given by the invariant manifold
approach.
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1. INTRODUCTION

The problem of computing the normal modes and frequencies of non-linear continuous
systems has received much attention in recent years. In general, three approaches are
employed in the solution of such problems. In the first approach, the time dependence is
assumed a priori to be simple harmonic and the harmonic balance principle is then used
to obtain boundary value problems for the normal modes. Benamar et al. [1] used this
approach to compute the non-linear normal modes of simply supported and clamped
beams. Szemplinska-Stupnicka [2] used the generalized Ritz method in conjunction with
the harmonic balance principle to determine the mode shapes of some non-linear beam
systems and considered the effects of non-linear boundary conditions.

In the second approach, the motion is assumed to be a combination of the linear normal
modes, the individual contributions of which are represented by time-dependent
generalized co-ordinates. The Galerkin procedure is then employed to obtain a set of
non-linear coupled ordinary differential equations for the generalized co-ordinates. The
discretized equations are normally solved approximately by a perturbation technique [3,
4] or the center manifold reduction method [5].

In the third approach, no assumption is made regarding the spatial and temporal
behavior of the system and the governing partial differential equation is treated directly.
Shaw and Pierre [6–8] developed a method based on the invariant manifold theory for
constructing non-linear normal modes of conservative and non-conservative systems. The
normal mode for a non-linear system was defined as a motion which takes place on a
two-dimensional invariant manifold in the phase space. Nayfeh et al. [9] determined the
non-linear modes of a continuous system with cubic inertia and geometric non-linearities
using several methods. The invariant manifold and perturbation methods were applied to
the discretized equations and the multiple scales method was employed directly to the
governing differential equation and boundary conditions. It was found that all methods
yielded equivalent results. This finding, which was supported by a recent study of a

0022–460X/98/040561+09 $25.00/0/sv971246 7 1998 Academic Press Limited



. . 562

continuous system with quadratic non-linearity [10], can be explained by the fact that all
these methods involve asymptotic expansions about the equilibrium position.

In this paper, the non-linear normal modes and frequencies of a continuous system,
namely, an elastic beam resting on non-linear foundation, are computed, as in the second
approach, by first discretizing the system by using the Galerkin procedure. However, the
resulting non-linear differential equations are solved by transforming the time variable into
an oscillating time. This transformation permits power series expansion of the generalized
co-ordinates about the maximum displacement position, rather than the equilibrium
position.

2. FORMULATION

The problem considered is the free vibration of a linear Euler–Bernoulli beam resting
on a foundation with cubic non-linearity. The governing partial differential equation is

EI 14v/1x4 + rA 12v/1t*2 + a1 v+ a3 v3 =0, (1)

subject to the boundary conditions

v= 12v/1x2 =0 at x=0, L for simply supported beams (2)

and v= 1v/1x=0 at x=0, L for clamped beams, where v(x, t*) is the transverse
displacement at position x in the domain (0, L) and time t*, EI is the flexural rigidity, r

and A are the beam mass density and cross-sectional area respectively, L is the beam length
and a1 and a3 are the foundation coefficients. Introducing the non-dimensional quantities

z= x/L, t=(t*/L2)zEI/rA , w= v/L (3)

into equations (1) and (2) results in the non-dimensional form

ẅ+w2+ aw+ bw3 =0, (4)

subject to

w=w0=0 at z=0, 1 for simply supported beams (5)

and w=w'=0 at z=0, 1 for clamped beams, where the overdot and the prime denote
partial derivative with respect to t and z respectively, a= a1 L4/EI and b= a3L6/EI.

The solution of the governing equation (4) and boundary conditions (5) begins by
discretizing the continuous system using the complete set of linear mode shapes as a basis,

w(z, t)= s
a

i=1

qi (t)fi (z), (6)

where qi (t) are time-dependent generalized co-ordinates and fi(z)=ci (z)/ci (z�) are the
mode shapes for the linearized problem, normalized at a freely chosen position
z= z�=1/2i. For simply supported beams

ci (z)= sin gi z, gi = ip, (7)

and for clamped beams

ci (z)= sin gi z−sinh gi z− hi (cos gi z−cosh gi z), (8)

where hi =(sin gi −sinh gi )/(cos gi −cosh gi ) and gi are the positive roots of
cos g cosh g=1.
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The assumed form of the solution, equation (6), ensures that the boundary conditions,
equation (5), are satisfied at any time during the motion. Substituting equation (6) into
equation (4) leads to

s
a

i=1

(q̈i fi + qi f2i + aqi fi )+ b s
a

k=1

s
a

l=1

s
a

m=1

qk ql qm fk fl fm = o. (9)

The Galerkin procedure determines the generalized co-ordinates by requiring that the
error o resulting from the discretization be orthogonal to every eigenmode fj for
j=1, 2, . . . . Thus, multiplying equation (9) by fj , integrating over the beam domain and
using the orthogonality of the eigenmodes results in

aj q̈j + bj qj + b s
a

k=1

s
a

l=1

s
a

m=1

cjklm qk ql qm =0, j=1, 2, . . . , (10)

where

aj =g
1

0

f2
j dz, bj =(a+ g4

j )aj , cjklm =g
1

0

fj fk fl fm dz. (11)

Equations (10) represent a set of non-linear coupled ordinary differential equations in
terms of the generalized co-ordinates qj (t) which may be solved by a perturbation method
or the invariant manifold approach. Here, a technique based on the power series method
is developed. First the time variable t is transformed as

t=sin vt, (12)

which reduces the infinite time domain 0E tQa into a finite time scale −1E tE 1
within which the new variable oscillates harmonically at a frequency v to be determined.
Introducing equation (12) into equations (10) results in

v2(1− t2)q̄tt
j −v2tq̄t

j +
bj

aj
q̄j +

b

aj
s
a

k=1

s
a

l=1

s
a

m=1

cjklm q̄k q̄l q̄m =0, j=1, 2, . . . , (13)

in which q̄j (t)= qj (t) to indicate the change in functional form of the generalized
co-ordinates as a result of the transformation, and the superscript t denotes differentiation
with respect to t. The transformation of the independent variable from an infinite time
t to a finite time t permits power series expansion of the generalized co-ordinates in terms
of t. According to the theory of ordinary differential equations [11], equations (13) have
one ordinary point at t=0 and two regular singular points at t=21. It is appropriate
to write the power series expansion for q̄j (t) about the ordinary point t=0 as

q̄j (t)= s
a

n=1

Pnjt
2n−2, j=1, 2, . . . , (14)

where the Pnj are constants to be determined. Equations (14) show that the generalized
co-ordinates can represent periodic motion since they repeat themselves every time t=0.
Furthermore, only even powers are admitted in the series, so that the periodic motion is
captured repeatedly every half-cycle of the oscillating time (positive or negative). This
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condition places a requirement on the oscillating time frequency to be equal to one-half
the vibration frequency:

v=V/2. (15)

The product q̄k q̄l q̄m in equations (13) can also be written as a single power series given
by

q̄k q̄l q̄m = s
a

n=1

Rnklm t2n−2. (16)

Substituting equations (14) and (16) in equations (13) and introducing a shift of indices
so that all terms have the same power, one obtains

s
a

n=1 $v2(2n) (2n−1)Pn+1, j −v2(2n−2)2 Pnj +
bj

aj
Pnj

+
b

aj
s
a

k=1

s
a

l=1

s
a

m=1

cjklm Rnklm%t2n−2 =0, j=1, 2, . . . . (17)

If equations (13) are to be satisfied at any time, all the bracketed coefficients in equations
(17) must vanish. This condition gives the recurrence relation

Pn+1, j =
$v2(2n−2)2 −

bj

aj%Pnj −
b

aj
s
a

k=1

s
a

l=1

s
a

m=1

cjklm Rnklm

2n(2n−1)v2 , n, j=1, 2, . . . , (18)

between the successive rows in the coefficient matrix Pnj .
The initial value problem as formulated by equations (13) requires that the beam initial

displacement and velocity be specified. It is convenient to assume that the beam motion
starts at t= t=0 from the maximum displacement position when the beam velocity
vanishes. The non-linear normal mode is computed by assuming the motion to start with
a linear mode shape of a given amplitude at t=0. The elements of the first row P1j ,
representing maximum displacement, are therefore assigned zero values except for one
element that corresponds to the mode number. The first row in the Pnj matrix is a
fundamental one on which successive rows depend recursively in accordance with equation
(18). Furthermore, the form of expansions (14) ensures that the condition of vanishing
initial velocity is satisfied. The present approach differs from the perturbation and
invariant manifold methods in that the generalized co-ordinates are expanded about the
maximum displacement position at t=0 instead of the equilibrium position. The
subsequent motion, obtained from equation (18), depends on the oscillating time frequency
as a motion parameter. This frequency can be determined by invoking Rayleigh’s energy
principle which states that, for a conservative system, the maximum potential and kinetic
energies are equal. The maximum potential energy is reached at the maximum
displacement position, which is assumed to occur at the start of the motion. For the beam
considered, this is given by

Umax = 1
2 g

1

0

(u02 + au2 + 1
2 bu4) dz, (19)
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where the maximum displacement u(z)= lfi (z) is assumed to be a normalized linear mode
shape factored by the amplitude of vibration l. The kinetic energy of the beam is given

T= 1
2 g

1

0

ẇ2 dz= 1
2 v2(1− t2) g

1

0

(wt)2 dz. (20)

The maximum kinetic energy occurs when the equilibrium position is reached, for which
vt= p/4, 3p/4, 5p/4, etc. From equation (12), this position is reached at t=21/z2.
Consequently, the maximum kinetic energy is computed as

Tmax = 1
4 v2 g

1

0

(wt=t=1/z2)2 dz. (21)

3. RESULTS AND DISCUSSION

The first three non-linear normal modes and frequencies were computed for both simply
supported and clamped beams by using the recurrence relation (18) in conjunction with
Rayleigh’s principle. In each mode, the motion was assumed to start at t=0 from the
maximum displacement position with the linearized mode shape. As a result, the first row
in the coefficient matrix Pnj , being the basis on which subsequent motion depends, had zero
elements except for one element that corresponded to the mode number and was assigned
the value of the amplitude of vibration l. A frequency search was made for the natural
frequency by computing, for each oscillating time frequency v, the subsequent motion
from the recurrence relation (18). The non-linear coefficients Rnklm were evaluated based
on the linearized mode shape, as represented by the first row, vibrating harmonically with
a frequency of V=2v. Consequently, all these coefficients were zero except those for
which k= l=m= i, where i=mode number. This reduced the triple summation in
equation (18) to a single term. The resulting motion was used to evaluate the maximum
kinetic energy from equation (21). The error function (Umax −Tmax ), which depends on v,
always crossed the v-axis at only one value of the oscillating time frequency for which
Rayleigh’s energy principle was satisfied. The non-linear normal frequency of vibration

Figure 1. Convergence of the modal ratio (A3/A1) for the first non-linear mode of a simply supported beam
versus the number of terms N (l=0·063).
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T 1

Coefficient matrix Pnj of the first non-linear mode for the simply supported
beam (a=0, b=106, l=0·063)

n Pn1 Pn2 Pn3

1 0·6300E−1 0·0000 0·00000
2 −0·1398E00 0·2347E−8 0·4511E−1
3 0·9038E−1 −0·2005E−8 −0·7288E−1
4 −0·6048E−1 0·9589E−9 0·2488E−1
5 −0·6517E−4 −0·9273E−10 −0·1952E−2
6 −0·4624E−4 −0·6363E−10 −0·1140E−2
7 −0·3498E−4 −0·4712E−10 −0·7662E−3
8 −0·2765E−4 −0·3670E−10 −0·5583E−3
9 −0·2257E−4 −0·2963E−10 −0·4294E−3

10 −0·1887E−4 −0·2457E−10 −0·3433E−3
11 −0·1608E−4 −0·2080E−10 −0·2824E−3
12 −0·1392E−4 −0·1791E−10 −0·2376E−3

was, from equation (15), twice that value. The associated non-linear mode was then
approximated by the resulting maximum displacement on the other side of the equilibrium
position. This involved evaluating the generalized co-ordinates, equations (14), at t=1
which immediately reflected the degree of participation of various modes in the
construction of the non-linear mode. It is worth mentioning that the modal dynamics thus
determined satisfies approximately the equation of motion and Rayleigh’s energy principle.
The system time behavior is generated from the equations governing its motion.

To demonstrate the applicability of the present method to the linear vibration of beams,
the formulation was first applied to the linear vibration (b=0) of a simply supported beam
without foundation (a=0). The first natural frequency was computed to within 0·03
percent of its exact value (p2). Naturally, no coupling was present between the various
modes because of the system linearity. The associated generalized co-ordinate had the
coefficients P11 =1, P12 =−2, P13 =P14 = · · ·=0, which represent the harmonic time
variation 1−2 sin2 vt=cos Vt.

The non-linear normal modes were obtained and presented by a set of values
(A1, A2, A3, . . .) of the generalized co-ordinates normalized with respect to the value of the
corresponding mode. In all the results the values used for a and b were a=0 and b=106.
The first non-linear mode was computed for the simply supported beam for l=0·063 by
including the first three modes ( j=1, 2, 3) in its construction. The modal ratio (A3 /A1)
computed with various numbers of terms N included in series (14) is shown in Figure 1.
The modal ratio is seen to converge to the correct value with N=45. This number of terms

T 2

Vibration frequency ratio V/VL for the simply supported beam (a=0, b=106)

First mode Second mode Third mode
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

Amplitude l Reference [8] Present Reference [8] Present Reference [8] Present

0·01666 1·6133 1·7028 1·0501 1·0565 1·0099 1·0042
0·0333 2·7209 2·9775 1·2001 1·2107 1·0395 1·0402
0·05 3·9289 4·3415 1·4511 1·4336 1·0891 1·0983
0·063 4·8907 5·3341 1·7162 1·6371 1·1415 1·1526
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Figure 2. The first non-linear mode for the simply supported beam (l=0·063). ——, Present method;
—·—·—, invariant manifold; - - - -, linear.

was therefore used in all subsequent computation. With the first three modes included,
the first non-linear mode was obtained as (1, −0·7311E−8, 0·2286) which is
significantly affected by the third modal component, with the second component having
negligible contribution because of its asymmetry. When the number of components
was increased to five, the first non-linear mode was given by (1,−1·6596E
− 8, 0·2290, −0·3621E−9, 0·5562E−9) which shows a negligible effect from the fifth
modal component. Consequently, at amplitude of vibration l=0·063, the first non-linear
mode is influenced only by the third modal component. The first 12 rows of the coefficient
matrix Pnj of the first non-linear mode with three modal components are shown in Table 1.
The progressive decrease in absolute value of the series coefficients characterizes a
convergent solution. In Table 2 the non-linear frequency ratio V/VL of the first three modes
for the simply supported beam for various amplitudes is compared with those of the
invariant manifold approach [8]. VL is the linear frequency of vibration. Good agreement
is seen between the two methods, although the present method predicts greater effect of
the non-linearity on the first normal frequency. The results show an increase in the first
three frequencies, with amplitude of vibration with the second and third frequencies being
much less affected.

In Figure 2 the first non-linear mode is compared with that predicted by the invariant
manifold approach [8] for l=0·063. The present method is seen to attach greater
importance to the third modal component. This may be explained by the fact that the
invariant manifold approach involves expansion of the generalized co-ordinates up to third

T 3

Vibration frequency ratio V/VL for the clamped beam (a=0, b=106)

Amplitude l First mode Second mode Third mode

0.01666 1·0638 1·0102 1·0033
0·0333 1·5333 1·0410 1·0116
0·05 2·0930 1·1221 1·0256
0·063 2·5221 1·2709 1·0388
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Figure 3. First normal mode of the clamped beam, ——, Non-linear; — —, linear (l=0·063).

order only and the normal mode thus generated compares well with that obtained by a
fifth order power series expansion (N=5), as can be verified from Figure 1. The second
and third non-linear modes were unaffected by the non-linearity, which is in agreement
with the invariant manifold findings. Four modal components for the second mode and
five components for the third mode were used. The computed second and third modes were
(−0·2455E−7, 1, 0·2731E−7, −0·9682E−9) and (0·3527E−7, −0·2039E−7, 1,
−0·1016E−9, −0·1435E−12), respectively.

The results for the clamped beam show that the vibration frequencies are significantly
less affected by the non-linearity than those of the simply supported beam, with the first
frequency being most affected, as shown in Table 3. The first non-linear mode for the
clamped beam, with l=0·063, is compared with the linear mode shape in Figure 3. Again,
only the third modal component showed significant influence, although to a smaller degree
than in the simply supported beam. The second and third non-linear modes for l=0·063
were almost unaffected, as given by (0·3941E−5, 1, 0·1066E−7, 0·1636E−4) and

T 4

Coefficient matrix Pnj of the first non-linear mode for the clamped beam
(a=0, b=106, l=0·063)

n Pn1 Pn2 Pn3

1 0·063 0·0 0.0
2 −0·1352E00 −0·1443E−5 0·4126E−1
3 0·7755E−1 0·1537E−5 −0·9065E−1
4 −0·5274E−1 −0·5798E−6 0·4016E−1
5 −0·2877E−3 0·8916E−7 0·8573E−3
6 −0·2027E−3 0·5866E−7 0·4351E−3
7 −0·1525E−3 0·4231E−7 0·2687E−3
8 −0·1202E−3 0·3232E−7 0·1855E−3
9 −0·9780E−4 0·2578E−7 0·1373E−3

10 −0·8163E−4 0·2117E−7 0·1066E−3
11 −0·6946E−4 0·1778E−7 0·8578E−4
12 −0·6003E−4 0·1521E−7 0·7085E−4
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(0·1322E−3, 0·8123E−5, 1, −0·2903E−4, −0·5172E−3) respectively. The first 12
rows in the coefficient matrix Pnj for the first mode shape of the clamped beam l=0·063
are given in Table 4.

4. CONCLUSIONS

A method for the computation of normal modes and frequencies of elastic beams resting
on a non-linear foundation has been presented. The Galerkin procedure was used to
discretize the equation of motion and the discretized equations were solved by the power
series method upon transforming the time variable into an harmonically oscillating time.
For simply supported and clamped beams, the first non-linear mode was found to be
significantly influenced by the third modal component only, while the second and third
non-linear modes were practically unchanged.

The vibration frequencies were increased by the non-linearity, although the first
frequency was the most affected. Whereas existing perturbation and invariant manifold
techniques involve asymptotic expansions about the equilibrium position, the present
method expands the solution about the maximum displacement position and facilitates the
inclusion of a greater number of terms in the expansion. A significant advantage of the
present method is that it determines the degree of participation of various modes in the
construction of non-linear mode shapes. The computational labor is also significantly
reduced, regardless of the type of boundary conditions.
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